ALGEBRA

List 5.
Analytic geometry in \Re^{2} and \Re^{3}.

1. A line ℓ and a point M on the plane are given. Write the parametric and the normal forms of equation for a line which contains M and is
(1) parallel to ℓ;
(2) orthogonal to ℓ
in the following cases:
a) $M(2,-3), \quad \ell: 2 x-3 y+5=0$;
b) $M(1,-2), \quad \ell: 5 x-y+3=0$;
c) $M(4,-1), \quad \ell:-3 x+y+2=0$.
2. For the triangle $A B C$ with $A(-2,3), B(4,1), C(6,-5)$, write the the parametric and the normal forms of equation for a line which contains
a) the median containing the vertex A;
b) the bisector containing the vertex A;
c) the altitude containing the vertex A.
3. The middle points of the sides of a triangle are $M_{1}(2,3), M_{2}(-1,2)$ i $M_{3}(4,5)$. Find equations of the sides of the triangle.
4. Write an equation of the line such that the point $P(2,3)$ is the orthogonal projection of the origin on this line.
5. The lengths of vectors \vec{v} and \vec{w} are equal to 2 and 3 , respectively. Knowing that $(\vec{v}, \vec{w})=-1$, calculate
a) $(\vec{v}+2 \vec{w}, 2 \vec{v}-\vec{w})$;
b) the angle between $\vec{v}+\vec{w}$ and $\vec{v}-\vec{w}$.
6. Find the values of the parameters t, s for which the vectors $\vec{v}=(2-2 t, 2,-4)$ and $\vec{w}=(1,3-s, 1)$ are parallel.
7. Find the values of the parameter t for which vectors $\vec{v}=(2-2 t, 2,-4)$ and $\vec{w}=(1,3-t, 1)$ are orthogonal.
8. Compute the area of the parallelogram spanned by vectors $\vec{v}=(2,2,-1)$ and $\vec{w}=(1,3,2)$.
9. Compute the area of the triangle with vertices $A=(1,0,1), B=(2,0,4)$ and $C=(0,1,1)$.
10. For the triangle from the previous problem calculate all the altitudes.
11. Compute the volume of the parallelepiped spanned by vectors $\vec{u}=(2,2,-4) \vec{v}=(1,2,0)$ and $\vec{w}=(1,3,1)$.
12. Compute the volume of the tetrahedron with vertices $A=(0,1,0), B=(1,1,2), C=(0,2,1)$ and $D=(3,2,-1)$.
13. For the tetrahedron from the previous problem compute the altitude through the vertex D.
14. Find normal and parametric equations of the plane
(a) through the points $P=(1,2,1), Q=(2,1,5)$ and $C=(3,0,1)$;
(b) through the point $P=(-2,3,2)$ and including the $O x$ axis;
(c) through the point $P=(1,0,1)$ and orthogonal to the $O y$ axis.
15. Explain why the parametric equations

$$
\left\{\begin{array} { l }
{ x = 2 + t } \\
{ y = 1 + t } \\
{ z = - 1 + 3 t }
\end{array} \quad \text { and } \left\{\begin{array}{l}
x=2 t \\
y=-1+2 t \\
z=-7+6 t
\end{array}\right.\right.
$$

describe the same line.
16. Do the parameteric equations

$$
\left\{\begin{array} { l }
{ x = 2 + 3 t + s } \\
{ y = 1 + t + 2 s } \\
{ z = - 1 + t - s }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
x=5+4 t+2 s \\
y=2+3 t+4 s \\
z=-2 s
\end{array}\right.\right.
$$

describe the same plane? Justify your answer.
17. Find a parametric equation of the plane given by the equation $x+2 y-z+5=0$.
18. Find a normal equation of the plane given by the parametric equation

$$
\left\{\begin{array}{l}
x=2+t+2 s \\
y=1+2 t+s \\
z=3+t-s
\end{array}\right.
$$

19. Find a parametric equation of the line in which two planes

$$
\left\{\begin{array}{l}
x+2 y+z+3=0 \\
2 x-y+z+5=0
\end{array}\right.
$$

intersect each other.
20. Find the intersection point of the line $l: x=t, y=1+2 t, z=3+t$ and the plane $\pi: x+2 y-z-3=0$.
21. For the point $P=(1,0,1)$ and the plane $\pi: x+2 y-z+3=0$, find
(a) the projection of P on π;
(b) the distance from P to π;
(c) the point, symmetric to P with respect to π.
22. For the point $P=(1,2,3)$ and the line $l: x=2 t, y=1-t, z=-2+3 t$, find
(a) the projection of P on l;
(b) the distance from P to l;
(c) the point, symmetric to P with respect to l.
23. Find the distance between two parallel lines

$$
\left\{\begin{array} { l }
{ x + y + z + 2 = 0 } \\
{ 2 x - y + z + 5 = 0 }
\end{array} \quad \text { and } \left\{\begin{array}{l}
x+y+z+2=0 \\
2 x-y+z+7=0
\end{array}\right.\right.
$$

24. A line ℓ and a point P on the plane are given. Find the point Q, which is the projection of P on ℓ, and the point R, which is symmetric to P w.r.t. ℓ
a) $P(-6,4), \quad \ell: 4 x-5 y+3=0$;
b) $P(-5,13), \quad \ell: 2 x-3 y-3=0$;
c) $P(-8,12), \quad \ell$ contains $M_{1}(2,-3), M_{2}(-5,1)$;
d) $P(8,-9), \quad \ell$ contains $M_{1}(3,-4), M_{2}(-1,-2)$.
25. Check if the lines ℓ_{1} and ℓ_{2} are parallel. For parallel lines find the distance between them. For non-parallel lines find the acute angle between them.
a) $\ell_{1}: x+y+3=0, \ell_{2}:\left\{\begin{array}{l}x=1-t, \\ y=2+t,\end{array} \quad ;\right.$
b) $\ell_{1}: 2 x-y+1=0, \ell_{2}:\left\{\begin{array}{l}x=1+t, \\ y=2-t,\end{array}\right.$
